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Second-order sloshing over an arbitrary bed
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The two-dimensional problem of the free sloshing of an inviscid fluid in a vertically
walled tank with an arbitrary bed shape is solved at both first and second order in the
Stokes expansion of the velocity potential. The approach employed at both orders uses
Green’s functions for a flat bed in conjunction with the Cauchy—Riemann equations to
derive integral equations for the tangential flux along the varying bed. The first- and
second-order potentials everywhere in the fluid may then be related to these fluxes.
Significant analytic progress is made with the calculation of various contributions
to the integral equations at second order. The equations at first and second order
are ultimately solved using a variational principle equivalent to the Galerkin method,
giving efficient and accurate results. In particular, the work involved in determining the
second-order solution is no more intensive than in solving the first-order problem.
The first-order solution is shown to reproduce known results for specific bed shapes.
The method is applied to a range of bed shapes and the second-order correction to the
free-surface elevation is illustrated.

1. Introduction

The sloshing problem is a classical eigenvalue problem of fluid mechanics, a stan-
dard reference for which is Lamb (1932). The references in Lamb show the problem’s
long history and the illustrious names involved with it; however, he notes that despite
such long-standing attention, the number of cases of motion with a variable depth
for which the solution has been obtained is very small. Lamb presents the analysis
for a triangular canal whose section consists of two straight lines inclined at /4 to
the vertical and which, to date, remains one of the few cases for which an analytical
solution is known. During the mid-twentieth century there was an upsurge of interest
in the sloshing problem driven by the need to develop a theory of the motion of
fluid within partially filled containers. The main applications of the era as highlighted
by Moiseev (1964) were all aspects of fuel tank problems, ranging from aircraft fuel
within wings to liquid fuelled rockets, as well as, for example, seismic oscillations of
structures under water pressure. Moiseev (1964) and subsequently Moiseev & Petrov
(1968) provided extensive reviews of the linear theory and main references of the
period. Although Moiseev states that most of the applications occur in circumstances
where perturbation theory proves extremely effective, he reiterates that even the
linearized case calls for numerical calculation. Moiseev does not deal with nonlinear
oscillations, for which he states that many of the algorithms of the time were clumsy
and convergence was unproved.

The advent of high-power computational facilities has enabled researchers to make
progress, albeit numerically, in the sloshing problem. The motivation is still driven
by the technological problems arising from the often violent motion of the fluid
within partially filled fluid containers. Efficient and accurate calculation of sloshing
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frequencies remains an important goal as it is desirable to avoid the resonance which
is known to occur in a system externally forced at, or near, a sloshing frequency. It is
also known that violent motions can induce large pressures so accurate modelling of
the motion is also required to estimate the pressures and to engineer safe containers.
Research has continued actively in two complementary directions, namely identifying
the sloshing frequencies, and modelling the nonlinear fluid motion.

There has been much work on nonlinear sloshing motions based on improving
modal approaches or using computational fluid dynamics code. Some papers are dis-
cussed next and the references therein provide a fair coverage of the field. Faltinsen
(1974) found analytic results for the motion of a two-dimensional rectangular tank for-
ced to oscillate harmonically at frequencies close to the lowest natural mode of oscilla-
tion and with small amplitudes of roll or sway. Faltinsen et al. (2000), Faltinsen &
Timokha (2001), Faltinsen & Timokha (2002) and Faltinsen, Rognebakke & Timokha
(2002) develop a multi-dimensional modal approach using generalized domain and
surface modes rather than natural modes. This basic approach, and its refinements
in the later papers as they develop, are shown to model sloshing in intermediate to
small depths and in tanks where the length to breadth ratio is O(1) and therefore a
two-dimensional approach is questionable. However, they note the difficulties inherent
in a modal approach of dealing with run-up, overturning and dissipation due to local
breaking. The sloshing problem is also amenable to nonlinear solvers, for example see
Wu & Eatock Taylor (1994) who apply their finite-element method code to consider
the sloshing problem in a rectangular tank. Their approach is to perform a finite-
element analysis, obtaining the solution through a variational principle and obtaining
the fluid motion by a Galerkin approach. They extend this work in Wu & Eatock
Taylor (1998) where they consider three-dimensional translational motion in a rectan-
gular tank and observe travelling waves and bores in addition to standing waves. Their
work is calibrated by checking that their three-dimensional code applied to two-
dimensional motion gives consistent results with two-dimensional solvers. In the
course of this paper they clearly demonstrate that there remain many interesting
problems associated with the sloshing problem.

The other main direction of research has focused on the calculation of linear slosh-
ing frequencies. Davis (1965) established important results regarding uniqueness of
solution and provided asymptotics of the eigenvalues for two-dimensional oscillations
in canals of arbitrary cross-section. In Davis (1974) significant progress was made in
asymptotics for the semi-circular cross-section which at the time remained unsolved.
Packham (1980) solved the case of a triangular canal with sides inclined at /6 to the
horizontal. Craggs & Duck (1978) show how techniques from complex-variable theory
may be applied to two-dimensional problems and proceed to solve the segmental and
arbitrary triangular cross-section. Fox & Kuttler (1983) provide an extensive review
of the two-dimensional sloshing problem and appropriate references. In their paper
they provide upper and lower bounds for numerous cross-sections by using conformal
mappings from the specific geometry to one whose explicit solution is known. They
also refer to a series of papers by Henrici, Troesch & Wuytack (1970), Troesch &
Troesch (1972), Miles (1972), Troesch (1972) and Troesch (1973) on the ‘ice-fishing’
problem, or sloshing in a strip aperture in an infinite half-space. This is important in
providing bounds on sloshing frequencies through domain monoticity, meaning that
if two domains have the same free surface but one domain contains the other then
the containing region has the larger sloshing frequency. This theoretical result is also
confirmed in the numerical results we produce in the present paper. Later work by
Mclver (1989) has looked at cylindrical and spherical containers filled to arbitrary
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depths. Evans & Linton (1991) also considered both an infinite and finite cylinder
with semi-circular cross section as well as a hemisphere, and presented an extremely
efficient technique for calculating the lowest sloshing frequencies.

Despite the long history of the sloshing problem, there is relatively little work on
the case of arbitrary bed shapes. The mild-slope equation (MSE), often attributed to
Berkhoff (1973), and later refinements by Chamberlain & Porter (1995) (modified
mild-slope equations — MMSE) introduce approximate analytical techniques essen-
tially involving depth-averaging under the assumption of small variations in the bed
shape. The MSE/MMSE prove to be very effective at solving problems involving, for
example, Bragg resonance and scattering by arbitrary bed profiles, see, for example,
Porter & Porter (2003). Booij (1983) has used the MSE to compute oblique sloshing in
a tank with a flat sloping bottom and appeared to obtain quite good agreement with
a numerical solution based on a finite-element method. More recently Belibassakis &
Athanassoulis (2002) have demonstrated an extension of the MSE which deals with
variable bed profiles by expanding in terms of a complete set of depth modes for
the flat bottom and adding in a function to ensure the arbitrary profile’s boundary
condition is met.

The focus of this paper is on solving the sloshing problem to second order, providing
a weakly nonlinear solution. Essentially this introduces the much more complicated
free-surface problem whereby the first-order potential forces the second-order poten-
tial, in essence having the effect of a pressure distribution on the free surface in the
second-order problem. Wehausen & Laitone (1960, §21) discuss this problem in gene-
ral, whereas later papers on second-order scattering such as Vada (1987), Mclver &
Mclver (1990) and Mclver (1994) make use of the specific form of this forcing to
solve scattering problems.

We base our approach on the Green’s Identity method of Porter & Porter (2000)
and, through careful formulation and manipulation, we are able to extend it to the
much more complicated second-order problem. Fundamental to this is the use of the
Cauchy—Riemann equations to convert normal to tangential derivatives, simplifying
the integral equations to be solved. It should be emphasized that our formulation is
exact at each order, satisfying the no-flow condition at the bed and the complicated
free-surface boundary conditions. We show how to apply the approach twice, non-
trivially dealing with the problem of defining the first-order potential on the free
surface, which is required to feed into the second-order problem. This key step in our
problem did not need to be calculated in Porter & Porter to determine the scattering
coefficients and was therefore not considered. The second-order problem requires more
careful manipulation as, in this case, the integral equation to be solved is inhomo-
geneous. However, we find it is possible to solve it and find a solution expressed in
terms of the coefficients of the first-order solution. We formulate the problem and
then proceed to solve at first order, showing how to calculate the sloshing frequencies
and how to obtain an expression for the first-order potential. We then show how
to solve the second-order problem, again yielding solutions for the second-order
potential on the free surface which is required to calculate the free-surface elevation.
We present calculations of the sloshing frequencies confirming that our method gives
correct results for known bed shapes. We also compare our results for sloshing
frequencies with those predicted by the MSE and MMSE and present results showing
that, for the sloshing problem at least, the MSE/MMSE’s effectiveness not only
depends upon the maximum slope but on the specific geometry under consideration.
Although our formulation is exact, the Galerkin approximation used to solve the
integral equations provides an approximate solution at first order, so we present data
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indicating the rapid convergence of the approximation. Finally we show the second-
order corrections to the first-order surface elevations.

2. Formulation and preliminaries

We consider surface gravity waves upon a fluid which is assumed to be incom-
pressible and inviscid, and whose motion is irrotational. The fluid motion, which
is taken to be two-dimensional, may therefore be described in terms of a velocity
potential @(x, y, t) which satisfies Laplace’s equation in the domain occupied by the
fluid. Here x is the horizontal axis and y is the vertical axis (positive downwards),
with y =0 representing the undisturbed free surface. We choose the wave steepness &
as the small parameter of the problem and so may expand the velocity potential and
wave elevation as

(2.1)

& =ed +&*Dy + 0(53),}
n=en +&'n+ 0(e?).

The derivation of the equations to be satisfied at first, second and higher orders of
this expansion is well known and so will not be repeated here. See, for example Mei
(1983) who gives an elegant scaling argument to deduce wave steepness as the small-
parameter, and, although he only derives the linearized equations, this argument may
be continued to higher orders. The scaling argument applied to higher orders also
yields the additional requirement, highlighted in Stokes (1847), of short waves/deep
water for the small-parameter expansion to remain valid.

The problem is to determine the sloshing modes in a tank whose walls are at
x=0,x=1[ and whose bed is given by the curve C defined as y =h(x). We define
the constant depth d such that d =max{h(x)|x € [0,/]}. The tank walls and bed are
impermeable so the fluid velocity normal to these fixed boundaries is zero. In this
case the equations to be satisfied by &, and &, are

Vz@i = 01 (x’ Y) € D? (22)
.

0% =0, y=h(x), 0<x <I, (2.3)
on

), [

o =0 on{x=0,0<y<h(0)}U{x=1I 0<y<h(l)}, (2.4)

for i=1,2, where 3/dn=n-V with n the unit outward normal on C, and D is
the region occupied by the fluid. The kinematic and dynamic free-surface boundary
conditions combine, upon eliminating the dependence on 7y, 1, to give

0’ 0D,
—e— 1 =0 =0 2.5
oz oy ony (2.5)
at first order and
RL) 0P B 100, 0 [3°® 0P
L g = (Vo) - - | S g ony=0 (26)
at ay ot g ot dy | Ot dy

at second-order (see, for example, Mclver & Mclver 1990). The first- and second-order
surface elevations are recovered from the expressions

mzRe{g_} on y =0 27)
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and
1 (3, 320, 1 5
— _ _ — )] = 0 28
2 g<31 +n18y8t+2(v 1) ony (2.8)
Assuming time-harmonic motion of frequency w for the first-order potential we write
i(x, y, 1:K) = Re{gi(x. y; K)e ™) (2.9)
where the frequency parameter is
>
K=—. (2.10)
8
The time-independent first-order potential now satisfies
V¢, =0, (x,y)e D,
991
8—+K¢1—0 ony=00<x </,
d¢, (2.11)
8_:0 on{x=0,0<y<h(0)}U{x=1I 0<y<h()},
X
9
ﬂ=0 ony=nh(x),0<x <l
on

In the case of constant depth h(x)=4d this problem is easily solved by separation of
variables to give modal solutions

¢>£”) = C, €OS [4,x cosh ,(y — d) (2.12)

for arbitrary coefficients C, where
nm

P = n=12,..., (2.13)
with frequencies w = w, determined by the dispersion relation
K = u, tanh(w,d). (2.14)

So for the first mode, for example, the dimensionless wavenumber w,/ is given by «
which, for a tank where [/d =1 gives a dimensionless frequency K/ =3.1299, and for
a tank where //d =2, gives Kl =2.8813.

We also follow Vada (1987) and Mclver & Mclver (1990) to express the second-
order free-surface boundary condition as

2
B_QZZ - g& = Re[F(x)e_2i‘”’] + Fy(x) ony=0 (2.15)
ot ay

where

F(x)= [iw(qul ) — %iwqb]% <K¢1 + 8%‘)] (2.16)
y=0
and
2 2
Fy(x) = lcm 29 Eaaj;] (2.17)
y=0

and ¢ denotes the complex conjugate of ¢.
In the solution to both the first- and second-order problem we will make use of
the Green’s function for a two-dimensional infinite domain with a constant depth d
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which we will denote G1(x, y|xo, o), and which satisfies

V2G| =—8(x — x0)8(y — o), —w<x<ow, 0<y<d,
G,
W+KG1_O Ol’ly—O, (218)
@zo ony=d, —0<x <.
dy
It has the form
. wn(y)wn(.VO) —k\ - |
Gy(x, , = LS PR o 2.19
1(x, ylxo0, 30) ; g (219)
where
2(v) =N Y% cosk,(d —
vuly)= (d =), —0,1,2,..., (2.20)
N, = 5{1 + sin(2k,d)/2k,d},

and we have used &, (n=1, 2, ...) to denote the positive real roots of
K = —k, tank,d

incorporating ko = —ik where k is the real root of the dispersion relation
K = ktanhkd.

A derivation of this Green’s function is presented in Mei (1983); however, it should
be noted that the final expression therein contains a sign error.

We now construct, using the method of images, a Green’s function G(x, y|xg, yo; K)
for the tank satisfying (2.18) for 0 <x <[ with G, =0 on x =0, [ for 0 <y <d. Hence

G(x, y|xo, yo) Z {G1(2ml + x, y|xo, yo) + G1(2ml — x, y|x0, yo)} (2.21)

m=—ao0

or by using (2.19)

G(x, ylxo, yo) = Z Z wn(giw;(y O fenl2mita—xol | g—hnl2mi—z—xol}, (2.22)

m=—o0 n=0

from which we deduce that

Vn(¥)¥n(y0) {coshk,(I — |x — xo|) + coshk,(I — x — xo)}
Glx, ylxo, yo Z k,d sinh k, - (223)

We note that G converges everywhere in the domain apart from (x, y) = (xo, yo) where
it possesses a log singularity.

3. First-order solution

We proceed to find the first-order potential using the method of Porter & Porter
(2000). We apply Green’s Identity

//(¢1V2G—GV2¢1)dD=/(¢1§_G?>
D
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where s measures the arclength on S, the boundary of D, which gives
G 0
—$1(x0, yo) = / <¢1— - Gﬂ> ds.
an on

Now the boundary conditions on G and ¢; mean that the only contribution is from
C and therefore

$1(x0. y0) = /@—w (3.1)

In this form equation (3.1) represents a homogeneous second-kind integral equation
for ¢; and hence can be used to determine the sloshing frequencies at first order. We
choose to proceed further following Porter & Porter’s (2000) technique of converting
normal derivatives to tangential derivatives by using the Cauchy—Riemann equations
in the form

9 2 .
—Ya(y)et =F —x,(y)e™,
as on

5 5 (3.2)

(e = o (),

n as

where

Ja 1 0 d
_— = — _h/ -~ n )
on o ( (x)ax * 8y>
o 1/0 ol
==+ W x)— ).
as o <8x + (X)By) (3.3)

=/ (14 (' (x))?),
xn(y)— V2 sink,(d — y).

Using these equations we deduce that

3°G 9’H

andny - 05050

where

¥, - coshk, (Il — |x — xg|) —coshk,(l —x —x
Hx., ylxo, yo: K) = 3 220 00) fcoshi, (= | = o) ( 0}

2k,d sinh k,,/ (3:4)

We can now derive an integral equation by differentiating equation (3.1) with respect
to ny and noting that this derivative must vanish on yy = h(xg). Therefore

2
5 G(x9, Yo|x, y)ds
n

9 0
0= = —¢1(x0. yo) = —/ $1(x, y)
1o c on

82
= [ #1052 0 ol ) s
c 500S
which on integrating with respect to sy becomes
d
Co= [ i )3 Ho ol ) ds
c s

We take the limit xo —/ where it may be shown from the definition of H that the
integrand vanishes and hence Cy, the constant of integration, is zero. We may now
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integrate by parts to obtain
9
0 = [¢1H (x0, h(x0)|x, y)]c —/ H—— ¢1

It may be easily seen from the definition of H(xq, yo|x, y) that the first term above
vanishes to give

/ H% ds = 0. (3.5)
If we now define
qi(x) = [ﬂ + 1 (x )a¢1] (3.6)
d Y | ymnix)
and
Xn(h(x)) X (h(x0)) {cosh k(I — |x — xo|) — coshk, (I —x — xo)}
m{xo, x; K) = Z 2k, d sinhk, (3.7)

the integral equation may be rewritten as
1
/ m(xo, x; K)gi(x)dx =0, 0<x <l (3.8)
0

Non-trivial solutions of this homogeneous first-kind integral equation furnish the
sloshing frequencies for the tank containing the particular bed shape y =h(x) and the
corresponding function ¢;(x) which is related to the tangential flux along the bed. In
order to solve the second-order problem, however, we must find ¢, in a suitable form
to feed into the second-order problem. Specifically this requires the value of ¢; on
y =0 so we proceed to find the general form of ¢; everywhere in D and, in particular,
its value on the free surface, y =0.

We now use equations (3.2) to deduce the relation

oG JL
an  ds
where L(x, y|xg, yo; K) is given by

an(ym(yo) sinh &, (1 — |x —xol = sinhk,(I —x —x0)|
2k,d sinh &,/ ’ 0

. : (39)
Xn(y)l//n )’0 {snlhkn(l - |x _XO‘) + Sll’lhk,,(l —X _XO)}
Z . , X > X.
—~ 2k,d sinh k,,/
Therefore, performing integration by parts in equation (3.1) we deduce that
-x9
816000 30) =~ LG v s Kl + [ Lsto s 025 ds o
c

A careful treatment of the term [¢;L]¢ noting that L is discontinuous at x = x, yields

- (h(xo))lﬂn(yo).

[$L1c = gu(xo, hlxo)) Y F=m (3.11)
=0 n
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This may be simplified using the result

Xn(h(x0 )%()’o) _ 0, 0 < yo < h(x),
Z = f(y) = { | hoo) < 3o <] (3.12)

which is found by expanding the function of y, on the right-hand side in the complete
set {¥,} to give

[¢1L]c = ¢1(x0, h(x0)) f (Vo). (3.13)

Finally, upon substituting in equation (3.10) we obtain the expression

l
$1(x0, y0) = /0 L bl 3o ) de, o) €D, (3.14)

This may be used to find ¢; everywhere in D. However, for our purposes we note
that we simply require the expression for ¢; on the undisturbed free surface y =0.
Hence

[
$1(x0. 0) = /0 L(x, h(x)lx0, 0; K ) (x) dox. (3.15)

This result is in terms of the bed-flux function ¢(x) already computed and gives
us all the information we require, both to compute the time-independent first-order
wave elevation given by

ni(x) = Re {—igwdn(x, O)} ,

and to feed the first-order results into the second-order problem.

4. Second-order solutions

Recall that the second-order potential @, must satisfy Laplace’s equation together
with zero normal derivative on fixed boundaries. Furthermore it must satisfy the
complicated free-surface boundary condition (FSBC)

RRL/ P -
S gt =Re[F()e ]+ F(x)  ony=0
at dy

as stated in (2.15) and where the terms on the right-hand side are defined in equations
(2.16) and (2.17). Now, following Mclver & Mclver (1990), we observe that the right-
hand side of the FSBC suggests that @, has the form

@2()(, Y, t) = @X(.X, y) —I't+ Re[¢2(-xv y)e—Zia)l] (41)

where the steady and double-frequency components of the potential, @; and ¢,, both
satisfy Laplace’s equation and have zero normal derivatives on the fixed boundaries.
The FSBC implies the two conditions

09, _ Fi(x)
dy g

ony=0,0<x <l (4.2)

and

4K¢z+%—g(x) ony=0 0<x<I (43)
y
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g(x) = {(3;51) K22 + ¢13¢1} . (4.4)
X y=0

The choice of I' simply affects the position of the mean free surface and is set to
a value which guarantees mass conservation, i.e. by requiring no net flux across the
undisturbed free surface. Furthermore, noting that since ¢; satisfies a homogeneous
problem, it may be taken to be real without loss of generality; therefore it is evident
that Fy(x)=0 in equation (4.2) and consequently @, has zero normal derivative on
the boundary y =0. Then (see, for example, Dettman 1965)

//ch -V&,dD = — //¢V2q>dD+//q>Vq> -nds = 0.

Therefore V&, =0 in D and so we deduce that &, is a constant which we may set
equal to zero without loss of generality.

We now turn to solving for the double-frequency component ¢, and we note that
g(x) may be calculated in terms of (3.15). The full boundary value problem for ¢, is

where

Vg, =0, (x,y) € D,
%: on {x=0,0<y<h0)}U{x=1 0<y<h(l)},
X
4K¢2+%—g() ony=0,0<x <, (4.5)
y
%: ony=nh(x), 0<x <l
on

We proceed to solve for ¢, using the same techniques applied at first order, but
now use the Green’s function G given by (2.23) for a frequency of 4K. So, applying
Green’s identity, but this time to ¢,(x, y) and G(x, y|xo, yo;4K), gives contributions
from the free surface and the bed only. Thus

—$a(xo, yo)=/ —¢ziG(4K)+G(4K)% dx+/¢z(x,y)iG(4K)dS- (4.6)
y=0 ay ay c on

We now apply the FSBC to obtain

oy = [ GO v 4RI 0x + [ ot LG @)
In order to proceed as before we need the result
aiG(x ylxo, yo; K) = iL(Xo, Yolx, y; K)
which is deduced from equations (3.2) and where L(K) is defined by (3.9). We now
differentiate with respect to ng to give

0

l
0
— 2 0 y0) = / 0 Gx, Olx0, yo: 4K )g(x) dx — /
87’10 0 al’l() c 85‘85‘0

Then applying the bed condition and converting from normal to tangential derivatives
we find

2

H(4K)pyds.  (4.8)

I 2
0= / iL(Xo, h(xo)lx, 0;4K)g(x)dx — [ ¢ ! H(4K)ds on yo = h(xo). (4.9)
0 950 c 0s0dsp
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We may now integrate with respect to so. So

!
Co =/ L(xq, h(xo)|x,0;4K)g(x)dx —/¢2;—SH(4K)ds on yo = h(xo) (4.10)
0 c

and using the limit xo —» 0 we deduce that Co =0. Integrating the second integral by
parts we find that

I
0
~ [ Ll o), 0:4K)g00) de = —ga @R e + [ HEK)Z2ds on yo=hixo)
0 c
(4.11)
where, since H(4K)=0 at xo=0,/ the first term on the right-hand side vanishes,
giving
: 39>
— [ L(xg, h(xg)|x,0;4K)g(x)dx = H(4K)8— ds on yg = h(xp). (4.12)
0 c s

Now, defining

g2(x) = {% + h’(x)%} (4.13)
Y 1y=nx)

and using equation (3.7) we may rewrite the integral equation (4.11) as

I 1
f()co)z—/0 L(xg, h(xo)|x,0;4K)g(x)dx =/0 m(x, xo;4K)g2(x)dx. (4.14)

Once we have solved for ¢,(x) we find that the solution for ¢, on the free surface
follows using a similar procedure as used previously in equations (3.9) to (3.15). Thus
omitting the details we find

l
$2(x0. 0) = plxo) — /0 L(x, h(x)[x0. 0; 4K )ga(x) i, (4.15)
where

1
p(xo) = —/0 G(x,0]xg, 0;4K)g(x)dx. (4.106)

Once again, ¢, is given in terms of a bed flux function ¢,(x) which we have already
computed. Now it may be shown from (2.8) that , may be decomposed as

m = Mo + Re{nxn szm}
with the time-independent expressions 1,y and 7y, given by
r 1 (/agi(x,0\°
Mo =——+— i 0" K*(¢1(x, 0))°
g 4g ax

and

. 2
i = — 2, 0) + i{ <M> + 3K (x, 0)>2}
g 4g ox

respectively. We set I' by requiring

!
/ n20(x)dx =0
0
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therefore obtaining

1 (8di(x, 00\’
F—Z/O <T> —K2(¢1(X,0))2d.x

It may easily be shown directly from the formulation of the governing equations that

l
JnT—
0

thus guaranteeing mass conservation, and providing a useful check for our numerical
results.

We note that we have all the information to calculate the second-order potential
throughout D, and specifically to calculate the second-order surface elevation. There-
fore we have effectively formulated the solution of the sloshing problem for arbitrary
bed topographies exactly to second order.

5. Approximation and numerical method

Although our formulation of the problem so far is exact we must resort to numerical
techniques to generate results. A discussion of the key steps involved is presented
below.

5.1. Calculation of the bed flux g1(x)

We solve the integral equation (3.8) numerically by using a Galerkin method where
we approximate g(x) by
N

q1 = ('?1 = Zanvn(x)- (51)

n=1

We introduce an operator .# where

1
(Mg1)(x0) = /0 m(x. xo; K ) (x) dx

and define an associated inner product

!
(6]1,1!7)=/0 g1(x)p(x)dx.

A variational principle equivalent to Galerkin’s method is used to approximate the
solution of the integral equation and takes the form

(%(jlvvm(x))zo, m=1,...,N.

This results in the matrix equation

N N
Zaan,n EZan(%vn,vm)=0, m=1,...,N. (5.2)
n=1 n=1

We now choose appropriate trial functions to model g;(x), the fluid flow along the
bed, particularly at x =0, [. A local analysis of the fluid flow shows that ¢;(x) — 0 as
x — 0,1 to give zero normal flux. Therefore we choose

Mm:#m@?) (5.3)
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and we construct the matrix M with elements M,, , defined by

xr(h(x)) x(h(y)) {cosh k(I —|x — y|) — coshk.(l —x — y)}
/ Ul / Z 2k, d sinh &,/

v,(y)dy dx.

(5.4)

We note that the terms in coshk,(I —x — y) are separable, so we define

! ink(l/2 —
e = [ ralhto) S )

! cosk(l/2 —x)
n = h - 4 A~ n d 9
gen = [ o) () e
1 8S0n8Som
G, 1id {gso,,gs()m tan(kl/2) — n(kl/Z)}

! sinhk,(1/2 — x)
rm = rh .r—n d, =1,2,...,
e = [ nhe) T

! coshk,(1/2 — x)
= _ =1,2,...
gcrn /0 Xr(h(x)) COSh krl/z vn(x) dxa r ’ 27 ’

1
G(r) = {gsrngsrm tanh(krl/z) -

gsrngsrm
mn T Ak d

tanh(k,.1/2)
We also break the terms in coshk, (I — |x — y|) into

cosk(l —|x =y
sin k/

Won = un(y)dy dx (5.3)

S Ry )

1 : h
=3 g5 [ ) [ SEEEE = ayar (56

o0
My =G\ =S GO 4 W + €. (5.7)
r=1
The only term which presents any computational difficulties is e, , which contains a
logarithmic singularity. Porter & Porter (2000) explain how to deal with this term
by subtracting the asymptotic leading-order contribution and then identifying it as a
log function which may be integrated out explicitly. The sloshing frequency and
associated bed flux were found using a standard bisection approach typically involving
12 bisections, and hence calculations of the matrix coefficients, to achieve six significant
figure accuracy.

5.2. Calculation of the first-order potential on y =0

To calculate the first-order wave elevation and to solve the second-order problem
we need an easily calculated expression for ¢;(x,0). We obtain this by expanding
¢1(x, 0) as a Fourier cosine series to remain consistent with (5.3), thus obtaining the
expression for the first-order potential on the free surface in a readily computable
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form
$1(x,0) = ibs cos(smx /1) (5.8)

where -
- ’37/0[ /OlL(x,h(x)|x0,O;K)ql(x)cos(snxo/l)dx dxo. (5.9)

Of course, by must be equal to zero to guarantee mass conservation; however, anti-
cipating a more compact means of presenting further results, we leave the summation
from s =0 but note that by =0. Now, using our expression for ¢;(x) as calculated
above we may insert into equation (5.9) to give

N 1l
by = Z%Zan/ / L(x, h(x)|xo, 0; K) sin(nmx /1) cos(smxo/ 1) dx dxg. (5.10)
n=1 0 Jo

In practice we truncate the cosine series for ¢;(x, 0) taking no more terms than N,
the truncation size for the Galerkin approximation. Now, the Fourier coefficient b,
in the form presented in (5.10) is computationally expensive in that, for each s, there
is a sum of double integrals of the discontinuous function L which itself involves a
sum. If we define

1 )
L,M(K)z/ / L(x, h(x)|x0, 0; K) sin (@) cos(STclx())dxdxo (5.11)
0 0

then the b, may be constructed from sums of the L, (K). We note that within the
double integral the discontinuous function L(x, h(x)|xg, 0; K) is evaluated on the free
surface thereby removing the dependence on the arbitrary function 4(xq) and therefore
allowing us to separate in the form

Loo(K) =~ / ZX’ i (M) 0 + s (5i12)

2k.d
where
Il(x)=/l sgn(x — xo) sinh k, (l—|x—x0\) os STX dxo. (5.13)
0 sinh k,/ l
Usinhk, (I — x — xo) STCXo
I = . 14
2(x) /0 Snh K cos ( ; )dxo (5.14)

Using Gradshteyn & Ryzhik (1965, §2.671:2) we may integrate these directly to give
k1>  (—1)° coshkx — coshk,(I — x) 5 sl " <snx>

Li(x)= il
1) = B e sinh(k,/) 22w S\ 5.15)
(x) = k1>  coshk,(l —x)—(—1)° coshk,x '
ST sinh(k,1)
Finally, simplifying we obtain
2sl STX
I L(x)=—————<sin| — 5.16
1(.X)+ 2()6) (krzlz-l-szﬂ:z) Sln< I ) ( )

which may be used in equation (5.12) to compute L, (K). In practice no further
progress may be made analytically with equation (5.12) due to the presence of the
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h(x) term so it must be computed numerically. This however presents no difficulties
for a Gaussian quadrature as the procedure above has reduced the problem to a single
integral with smooth integrand. We note from our numerical results that the decrease
of b, is much more rapid than the worst case of O(s~*) predicted by Fourier theory
and therefore our evaluation of ¢,(x, 0) is not limited by taking modest truncation
sizes in the Galerkin approximation.

5.3. Calculation of the integrals f(xo) and p(xo)

The integrals f(xo) in equation (4.14) and p(xo) in equation (4.16) as they are cur-
rently defined are rather complicated. However, the fact that they are defined on y =0
enables us perform the integration analytically. We are able to do this by simplifying
the expression for g(x) using the approach presented in the Appendix. In essence
this involves calculating the g(x) as a Fourier cosine series in terms of the Fourier
coefficients b, introduced in equation (5.8). Thus in the Appendix it is shown how we
may write

2N
glx) = Z gncos(nmx/1). (5.17)
n=0
Using Gradshteyn & Ryzhik (1965, §2.671:2-3) it is possible to integrate f(xo) and
p(xo) to give

(h(x0))¥,(0
Xﬂ(%y(hm> (518
where
= 2ns
Flx0) =D 8o Sinlsmxo/ 1) (5.19)
s=0 r
and
2 2N 0
p(xo) = E ; (; o +n2 - ) cos(sTxo/1). (5.20)

5.4. Calculation of the second-order bed flux q»(x)
Once again we solve using the Galerkin method to find

N

B> G =Y cavn(x) (5.21)

n=1

where the coefficients ¢, are found by solving the matrix equation

N
> caMyn(4K) = fu, m=1...N, (5.22)
where we define f,, by

)
m=/ﬂm%mm% (523)
0

and M, ,(4K) is the matrix defined in equation (5.7) but operating at 4K. The
integral in (5.23) must be integrated numerically to form the integral equation, but
this is relatively inexpensive. In particular, it is worth noting that our code used
the extremely efficient routine for summing a Fourier series in Acton (1997) to both
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sum quickly and avoid oscillatory effects. Solution of this inhomogeneous problem
is routine, and typically an order of magnitude quicker than the first order solution,
requiring only one calculation of the matrix coefficients.

5.5. Calculation of the second-order potential on y =0

Calculation of the second-order potential on y =0 poses no additional problems to
those encountered for the first-order potential. Equation (4.15) gives two contributions

to ¢
$2(x0, 0) = p(xo) + d(xo) (5.24)
where

d(xo) = — /0 l L(x, h(x)|x0, 0;4K)ga(x) dx. (5.25)

We see from the definition of p(xg) (5.20) that it is already in the form of a Fourier
cosine series, and d(xg) may be evaluated to give a Fourier cosine series exactly as
for the {b,} at first order. Therefore we may add both contributions to give ¢, as a
Fourier cosine series with coefficients {ds} fors=0,1,2....

6. Results

The numerical method for the first-order solution has been checked against several
analytic results for its accuracy. The first check is made by comparing the computed
sloshing frequencies against the known exact solutions (2.12) for a flat bed. It was
found that our method converged to six significant figures for modest truncation sizes
(N = 8) of the bed-flux approximations. Another check can be made by comparing our
results with those of Porter & Porter (2003) who considered scattering by a periodic
ripple bed. In their work they showed that the onset of Bragg resonance for the
scattering of waves by a smooth periodic bed was governed by frequencies at which
sloshing occurs over a single period of the bed contained within solid vertical walls.
In our problem, we have considered a more general situation in which the bed shape
does not have to belong to a smooth periodic structure. In particular Porter & Porter
(2003) produced sloshing frequencies for values of a/d =% in the two bed shapes
given by the functions

hix)=a+ %(d —a)(l —cos(2mx/1))
and
h(x) =d — (d — a)(1 — cos(2mx/1)).

These functions represent cosine curves with minima of 4(x)=a at x =0 and x =/ in
the former case and at x = %l in the latter case. Our results using a truncation para-
meter of N =8 are KI=3.0739 and KI=2.9508 respectively and agree with those of
Porter & Porter (2003) to the same accuracy. In figure 1 we show, graphically, the
variation of sloshing frequencies K/ as a/d is varied between % and unity, which
corresponds to the flat-bed solution previously mentioned. In figure 1 we also plot,
for comparison, results using the MMSE which were produced via direct integration
using an adaptive-stepsize Runge—Kutta—Fehlberg scheme. It can be seen that, as the
bed shape approaches the flat-bed case, all the results approach the analytic solution.
Likewise the exact results agree with Porter & Porter (2003) as a/d —>% to within
four significant figures with a truncation size of N =8. They also show the correct
monotonic decreasing behaviour as a/d — 0 as predicted by Fox & Kuttler (1983). It

can be seen that for mild slopes the MMSE produces reasonable accuracy as expected,
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FIGURE 1. Sloshing frequencies for the first mode over periodic beds given by Geom 3:
h=a+0.5(d —a)(1 — cos(2nx/1)); and Geom 4: h =d —0.5(d — a)(1 — cos(2nx/1)).
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d 112 d 112

FIGURE 2. Geometries considered for the second-order sloshing problem.

whereas for moderate slopes the results appear more geometry-sensitive. In particular,
by using the MSE, one of the geometries fails to show the correct monotonic decreas-
ing behaviour of the frequency for even moderate slopes. As a further check, we con-
firmed the calculations for the MMSE by independently solving via a Green’s function
formulation, giving identical results to those found by direct integration.

We shall adopt the previous notation in what follows by defining a to be the
minimum value of i(x) over 0 < x <. We proceed for the rest of the paper to consider
the two specific geometries in figure 2 and for which in the limit a — 0 results are
known. Results are presented for domains having various aspect ratios //d and where
a/d is varied in the interval [0, 1]. The bed shape for the first geometry is an arc of
a circle whose intercept with the vertical walls of the tank at a depth of a defines the
radius and in the limit @ —» 0 (when [/d =2) approaches the semi-circular canal for
which results have been computed independently by Evans & Linton (1991) using a
semi-analytical method. The second geometry is a canal with a triangular bed which
in the limit a — 0 (when [/d =2) approaches the geometry for which Lamb (1932)
provides an analytic solution, corresponding to sloshing in a right-angled wedge.
Lamb’s sloshing frequencies are thus determined by the roots of the equation

tanh kd = +tankd

where +(—) corresponds to antisymmetric(symmetric) modes.

Figure 3 shows a graph of the sloshing frequency, normalized by dividing by the flat-
bed solution (2.14), plotted against a/d for the first sloshing mode over a triangular
bed in a tank whose aspect ratio is governed by the relation I/d =2cot(n/n) for
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FiGUure 3. Normalized sloshing frequencies for the first mode over a triangular bed making
an angle of n/n with the horizontal bed.
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FiGURE 4. Normalized sloshing frequencies for the second mode over a triangular bed
making an angle of n/n with the horizontal.

n=3,4,...,8. This means that, when a =0, the angle that each section of sloping
bottom makes with the horizontal is mt/n. Thus, in figure 3, the variation of a/d from
one to zero represents the transition from the flat-bed solution to the triangular canal
solution. This case was run first with the trial function sin(nmx/l) where we found
that in the limits a/d — 1 we obtained the correct results to the required accuracy.
In the limit a/d —0 we obtained the results given by Lamb (1932) for the bed of
slope /4 accurate to four significant figures (K =1.000). Then, noting that the first
mode is antisymmetric, we anticipated a bed flux symmetric around //2 and therefore
ran the code again choosing sin((2n — 1)mtx /1) as the trial function. The latter results
are presented because, as expected, they give slightly better convergence for fixed
maximum truncation size. Results over the same bed shapes are also presented at
figure 4 for the second mode, which is symmetric and therefore requires the trial
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FIGURE 5. Sloshing frequencies for the first mode over an arc bed-shaped.

function sin(2nmx/I). In this case we are able to verify that, in the limit a/d — 0,
the results for the bed of slope m/6 agree with analytic results in Lamb (1932) and
Packham (1980) in which K/ =3.464.

Figure 5 shows a graph of the non-dimensional frequency K/ against a/d for the
first mode over a symmetric bed in the shape of an arc of a circle and where the
tank aspect ratio is [/d =2. The results are bounded from above by the rectangular
canal solution and from below by the semi-circular canal solution, which has also
been computed by Evans & Linton (1991) as K/ =2.7114. This case was run first
with the trial function sin(nmx//) where we found that, in the limits a/d — 1 and
a/d — 0, we obtained the correct results. Again we re-ran the code anticipating a bed
flux symmetric around //2 using sin((2n — 1)mx /1) as the trial function and we present
the latter results. Alongside we provide, for comparison, equivalent results using the
MMSE. Surprisingly, in this case the accuracy of the MMSE results is extremely poor
even for mild slopes.

For the flat-bed case a/d =1 all of our results were found to agree with the analyti-
cal results to six significant figures with modest truncation sizes (N =8). For the limit
a—0 we obtained four significant figure accuracy against known results for the
triangular bed shape and three significant figures for the semi-circular bed shape
using the sin(nmx/I) trial function and using a truncation size of N =48. Using
Legendre functions we were able to obtain six significant figure accuracy for the first
symmetric mode in the triangular canal problem where I/d =2. It is to be expected
that our approach will cause problems when a =0 as at this point the bed meets
the free surface. This problem manifests itself in our assumptions about the local
behaviour of the fluid flow at the join with the canal walls. In the case of the semi-
circular bed the condition at the end of the bed remains zero flux; however this is
inconsistent with the free-surface condition at this point. In the triangular case the
Legendre function was chosen to model the high fluxes anticipated in the region, thus
apparently improving the local modelling and regaining the required accuracy. We
found that, in order to improve on these results, we needed to take more terms in the
Fourier series expansion and even then found weak convergence as expected with a
Fourier series representation in this case.
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a/d N=6 N=12 N=18 N=24 N =30 N =36 N=42 N =48

1.00 1.44066 - - - - - - -
0.90 1.42759 -
0.80 1.41125 1.41124 - - - - - -
0.70 1.39083 1.39082 - - - - - -
0.60 1.36537 1.36535 - - - - - -
0.50 1.33372 1.33369 -
0.40 1.29445 1.29441 1.29440 - - - - -
0.30 1.24579 1.24569 1.24568 -

0.20 1.18525 1.18504 1.18502 1.18501 -
0.10 1.10859 1.10810 1.10804 1.10803 1.10802 - - -

0.05 1.06134 1.06043 1.06032 1.06029 1.06028 1.06027 - -

0.00 1.00367 1.00094 1.00042 1.00024 1.00015 1.00010 1.00007 1.00006

TaBLE 1. Convergence of results for sloshing frequency K.

Table 1 shows how convergence for the first mode of the triangular bed depends
upon the truncation size. We use a dash to denote no further improvement in results.
It is clearly seen that the Galerkin approach provides efficient convergence, reaching
at least four significant figures for a truncation size of N =12. In fact it is only for
the extreme case where a/d =~ 0 that increased truncation size is required to account
for the problems we anticipate at that limit in this formulation; nevertheless we see
that four significant figures are still obtained for a modest N = 12.

We move now to the results for the second-order problem where it can be shown
that the analytical solution for the forced double-frequency term at second order for
a flat-bottomed tank corresponding to the nth first-order mode of

p gAcosu,xcoshu,(y—d)
1 =

El

w cosh w,d
where K =w?/g, is given by

—iA? [g(3K?* + 2 —i3A2 /g(K* — u?) cos2u,x cosh2u,(y —d
_ JE( un)+ JE( [£y) €OS 241 paly —d)

16/K? 16+/K7 cosh 2u,,d

The expression for ¢, is easily derived following the formulation of the problem in
this paper. For an alternative derivation in the time domain, see Wu & Eatock Taylor
(1994) who use this result to calibrate their finite-element analysis code. However,
it should be noted that the second term in (6.1) differs slightly from that presented
in the reference, which appears dimensionally incorrect. Our code was run with a
Fourier series truncation size of 10 to find the first sloshing frequency to six significant
figure accuracy. We found full agreement with the second-order analytic solution in
(6.1), to five significant figures. In particular we found that in the limit a — 1, the
contribution to ¢, came from p(xy). However, as we decreased a we found that the
contribution from d(x) grew such that we still obtained agreement with (6.1) to five
significant figures.

We now solve the full second-order problem for second-order sloshing over a tri-
angular bed. Table 2 displays the results for the case where a/d = 0.6 for a truncation
size of N =12. It can be shown from our formulation that mass conservation is gua-
ranteed using the infinite Fourier series representation of the first-order potential on
the free surface. Therefore calculation of the integral of 5y, over the free surface
provides a valuable measure of the error introduced in truncating the Fourier series.

o3 (6.1)
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n a, b, c, d,
0 0.988842i
1 0.925275 2.67999 0 0
2 0 0 0.5310201 —0.4930301
3 0.368583 0.011046 0 0
4 0 0 0.205348i 0.142988i
5 0.012162 0.000303 0 0
6 0 0 0.0400891 0.002149i1
7 0.080727 0.000019 0 0
8 0 0 0.039160i 0.000132i
9 0.002728 0.000001 0 0
10 0 0 0.018101i 0.0000101
11 0.036602 0 0 0
12 0 0 0.018440i1 0

TaBLE 2. Table of results for second-order sloshing over a triangular bed where a/d =0.6,
N =12 and KI1=2.73073.

In this case we find that the integral of 1., over the surface is 3 x 107¢ which implies
that we have retained the five significant figure accuracy we obtained for the flat bed
with this truncation size.

Figure 6 plots snapshots of both the first-order and second-order surface elevations
(m and n, respectively) at regular intervals in half a period of oscillation for the
case where a/d =0.5 and for the same truncation size N =12. In this case we find
that the integral of 1, over the surface is 7 x 107%. The second half of the period is
simply the same sequence of snapshots with n; replaced by —n;. We normalized the
first mode of the free-surface potential to give a first-order surface elevation of unit
amplitude in order to compare all other contributions with this dominant mode. In
order to construct the total surface elevation including both the first- and second-
order terms we use 1 =e&n; + &2, where ¢ represents the wave steepness. Recalling
that our formulation has y positive downwards and therefore diagrams for elevation
are best viewed upside down, then the diagrams confirm that the second-order effects
tend to increase the crest heights, and decrease the troughs as expected.

The major computational effort is in finding the sloshing frequency via a bisection
method where each step involves a calculation of the matrix in (5.7). There is signi-
ficant code re-use provided the matrix equation is coded with frequency as a parameter,
in which case to solve the second-order problem we only need calculate the matrix
once more using a frequency twice the first-order sloshing frequency. We observe that,
once the linear sloshing problem is solved for the bed shape under consideration, the
second-order problem may be solved relatively easily with our approach.

7. Conclusions

In a weakly nonlinear model of wave problems, in order to produce reliable results
at second (and higher) orders, extremely accurate solutions are required at the lower
orders. This paper has shown how to provide a lower-order (linear) solution for a com-
plicated geometry and feed it into the next higher order of approximation, retaining an
exact formulation with regard both to the bed condition and the free-surface condition.
This approach may be extended to higher orders giving the possibility of highly
accurate representations although it is noted that the calculation of the free-surface
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FIGURE 6. First-order, (n;(~ cos(nx /1)), and second-order, 7,, wave elevations plotted against
x/1€]0,2] for sloshing over a triangular bed where a/d =0.5. (a) wt =0, (b) /8, (c) n/4,
(d) 3n/8, (e) n/2, (f) 5n/8, (g) 3n/4, (h) Tn/8. The vertical axis is n/d € [—1.25, 1.5]. (Note
that in our formulation y is positive downwards.)

coefficients becomes increasingly more complicated as the order increases. The solu-
tions are shown to converge rapidly, requiring quite modest truncations of the series
representations of the solutions.

Although useful in its own right and offering a practical means of investigating
second-order effects, it is envisaged that this method will provide a valuable means of
testing fully nonlinear solvers. It will enable them to be calibrated against a weakly
nonlinear model of motion over more realistic geometries. The method of solution
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can be extended, for example, to higher orders in the Stokes expansion and also to
the situation where the tank is forced to oscillate at a frequency either away from or
near to resonance, a problem which is currently being investigated.

One of us, G.J.D.C., would like to acknowledge the UK Natural Environment
Research Council’s support for this research.

Appendix. Calculation of g(x)

We note that g(x) depends on products of the first-order potential on the free
surface and its derivatives, which we have found as a finite Fourier series:

N
¢1(x,0) = _ b, cos(nmx/1).

n=1
Therefore treating each component of g(x) separately we have

N N

¢12 = Z Z b,b,, COS L, X COS [L;, X

n=1 m=1

1 N N
= § Z Z bnbm(COS Mnt+mX + COS ,u,n,mx),
m=1

n=1

Also

(8—);) = Z Z W mbpby, SIN (1, X SIN W, X

n=1 m=1

N N
1
=3 Z Z Mo Mo DDy (COS hy—m X — COS Py ymX),

n=1 m=1

and

82¢1 N N
¢1 W = - Z b, cos MnX Z /’L%nbm COS [y X
n=1

m=1

1

N N
= _E (Z Z bnbm,u,,zn(cos Mm4nX + cos /_anX)> .

n=1 m=1

Combining the above three results, converting to finite sums and simplifying we find
that

glx) 1
—iw/g 4

N N
SN bubu (3K + 2ttt — 143,) €OS X

n=1 m=1

1 N N
+ Z Z Z bnbm (3K2 - 2/1/an - M,zn) COS Up4mX.

n=1 m=1

Now we seek to write

2N
g(x) = gscos(smx/l) (A1)
s=0
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where the limits reflect that terms in w,_, contribute for s =0... N —1 and the terms
in @,y, contribute for s = 2...2N. After some algebra it may be seen that the four
distinct contributions to the Fourier series for g(x) simplify to give

8(x) =lib2(3K2+ 2)
“iwjg 44" Hon)>

1 N—1 N
+3 SN buscba (6K + 2ptnpt—s — p7) cOs px

s=1 n=s+1

N+1 s—1

1 2
+ Z Z Z bxfnbn(:;K - ,uﬁvfn(zlu“n + /’L.vfn)) COS [UsX

s=2 n=1

2N N

1 2
+3 > D beubuaBK? = iy n(2itn + o)) COS X

s=N+2n=s—N

This expansion has been extensively verified using Mathematica for a wide range of
values of b,. The coefficients of this series are extremely easy to calculate and give us
a much easier form of g(x) to deal with.
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